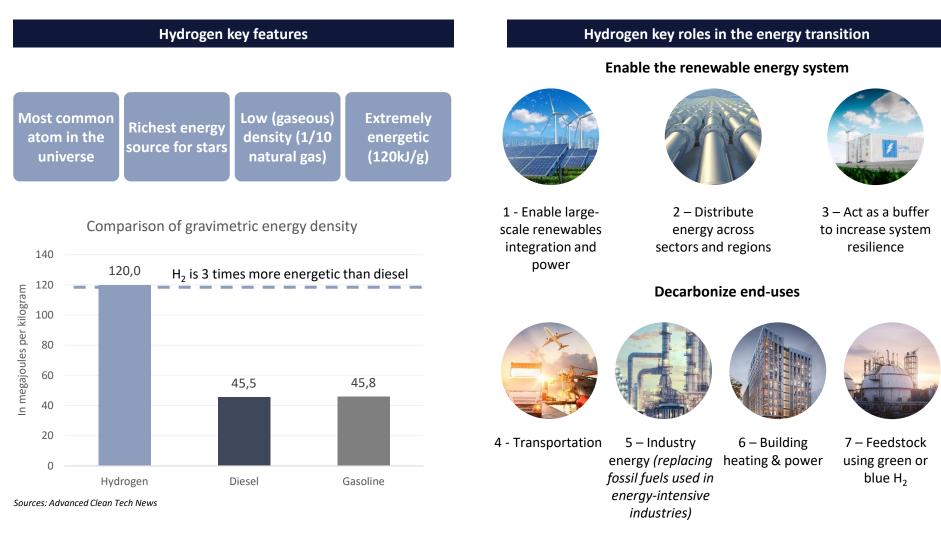

Cife XIXe FORUM ANNUEL HYDROGEN ET NUCLEAIRE

December 2, 2021

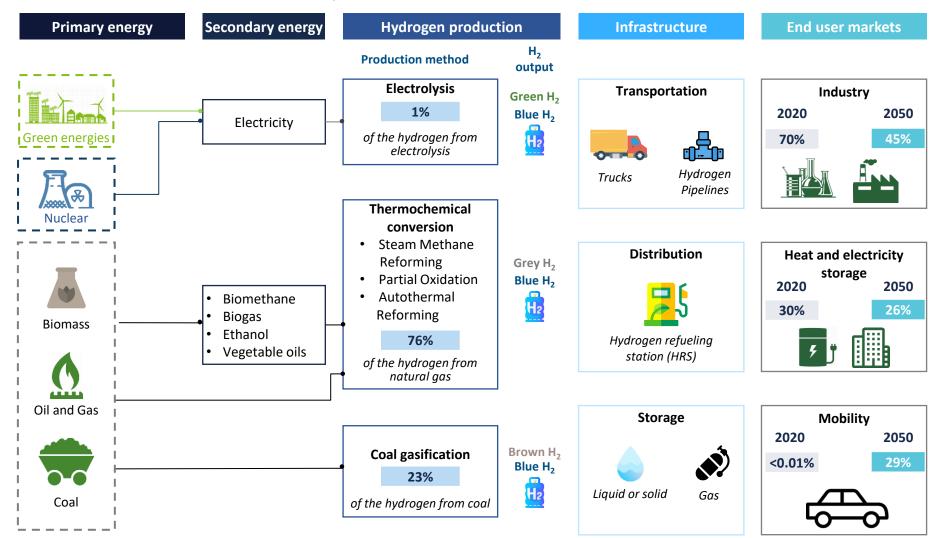
EU Direct CO₂ emissions in 2019



(1) LULUCF is land use, land-use change and forestry. It absorbs CO2 and partly offsets emissions from other sectors

Sources: European Environment Agency

Hydrogen, a key element for the decarbonization of the economy


Hydrogen offers a response to intermittent renewable energies by storing excess energy produced. The resulting green hydrogen is an ideal energy carrier to decarbonize many industrial and transportation sectors

Sources: Plastic Omnium – Hydrogen Conference (Oddo), Advanced Clean Tech News, L'UsineNouvelle, Air Liquide, Hydrogen Council, IEA 2019, CertifHy

H₂, a key energy carrier to implement transition to a low carbon economy

Green electrolysis development and carbon capture from fossil fuel hydrogen production are key elements for the transition to a low carbon economy

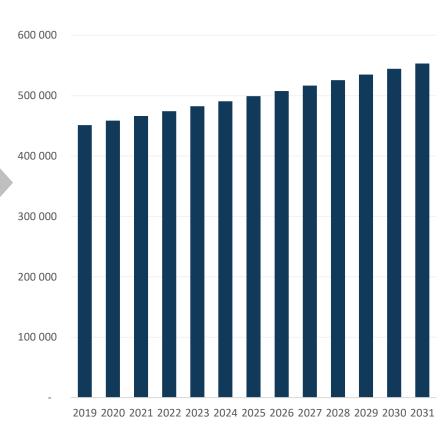
Source: "The Future of Hydrogen report" IEA, Air Liquide

Industry, currently the first hydrogen end-market mostly "grey"

Green hydrogen can lead industry in the broad sense to an eco-friendlier path. It is both a public concern and an obligation with governments setting "green" targets

Drivers for green hydrogen use in industry

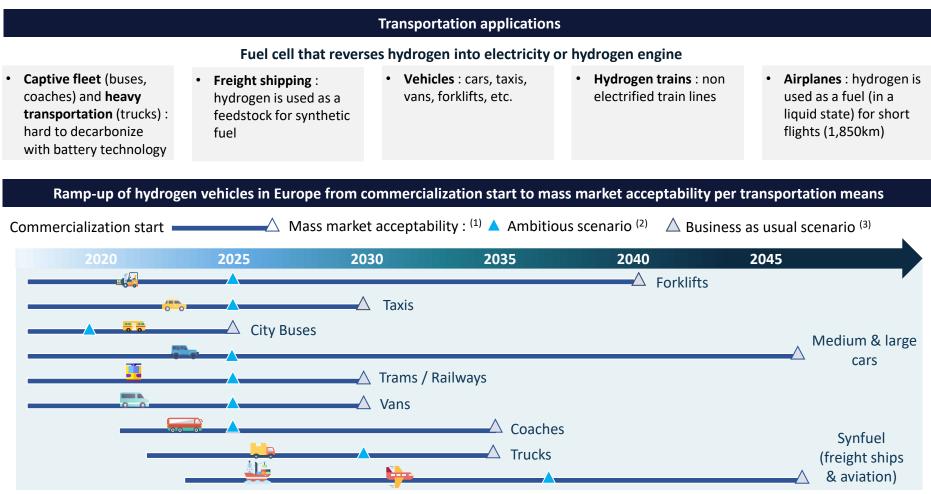
Few examples :


Spain aims at replacing a quarter of the almost **500,000 tons** of fossil-based hydrogen consumed by

- industry every year with the renewably-sourced version
- France targets **20-40%** decarbonized hydrogen in industry by 2028

Source: French national energy and climate plan (2020), Sia Partners 2020, Les Echos, lexology.com, energy.economictimes, Ministeries

Green hydrogen addressable market


Total hydrogen market for industry (MW)⁽¹⁾

Source: IEA 2019, AFHYPAC, Natureo Finance, (1) Equivalent electrolysis capacity required to produce total hydrogen market volumes

Many types of transportation means using hydrogen as of today

The adoption of H₂ in most transportation means has begun. A mass market deployment will require significant investments in H₂ production plants, distribution infrastructures, and production scale-up of vehicles

(1) Annual sales of hydrogen vehicle exceed 1% within the segment (2) Scenario where there is a joint effort by investors, industries, and policymakers, a step-up of activities along hydrogen value chain, heavy investments in R&D, coordination of industry and regulators to push for the enforcement of long-term objectives for decarbonization in general and hydrogen in particular (3) Scenario where current policies and other measures stay in place and evolve only slowly, gradual investment in R&D with initial pilots but no scale up of investments and low efforts in hydrogen adoption

Sources: Sia Partners 2020, "Hydrogen Roadmap Europe" Fuell cells and hydrogen, connaissancedesenergies.org

Challenges needed to be tackled in order to widespread hydrogen uses

An ecosystem approach is required to ensure an efficient and a profitable deployment of hydrogen economy

Primary energy

- Lower the cost of renewable energies, ideally to 10 - 15 €/MWh for PV and 20 -25 €/MWh for wind
- Renewable energy production scale-up (in order to achieve 70 GW of total installed electrolyzer capacity by 2030) ⁽¹⁾

Hydrogen production

- Increase the size of electrolyzer stacks to reduce the cost of the balance of plant and scale-up electrolyzer manufacturing
- Improve energy efficiency
- Capture CO₂ emissions from hydrogen produced with fossil fuel
- Build gigafactories of electrolyzer stacks (economy of scale)

Infrastructure

- Larger assets
- Higher pressure
- Increase load of infrastructure
- Set up hydrogen refueling stations close to end-consumers
- Develop a wide network of hydrogen refueling stations

End user markets

- **Decarbonize** major industries
- Manufacturing scaleup for fuel-cell stacks and other components
- A dense charging points' network for transportation

Source: Air Liquide, "The Future of Hydrogen report" IEA, BNEF, Kepler Chevreux, "Green Hydrogen investment and support Report" Hydrogen Europe, (1) Figure from "Path to hydrogen competitiveness" Hydrogen Council

Massive capital investments from private companies required for H₂

€ 430 bn are needed in Europe for the next 10 years : 1/3 coming from public money and 2/3 from private investors. Allocation of funds must go at the same time to production, infrastructure and end-markets

Hydrogen investment needs in Europe by 2030

	Necessary investments up to 2030	States required support (grants/subsidies) up to 2030
 Hydrogen production : Green H₂ production Existing blue H₂ production (Gas SMR) New blue H₂ (coal gasification) 	 € 220 bn € 187 bn € 20 bn € 12 bn 	€ 95 bn
Hydrogen infrastructure & Storage : • Pipelines • refueling stations • Port facilities • Salt cavern storage	 € 120 bn € 35 bn € 10 bn € 20 bn € 55 bn 	€ 15 bn
 Hydrogen applications : Mobility applications Heating Steel production Electricity production Synthetic fuels 	€ 90 bn • € 40 bn • € 34 bn • € 8 bn • € 5 bn • € 3 bn	€ 35 bn
Total investments	€ 430 bn	€ 145 bn

Focus on small companies in France needing investments

Sources: « Green Hydrogen investment and support Report » Hydrogen Europe

Christophe Rouvière Président Natureo Finance 21 rue du Faubourg Montmartre 75009 Paris, France

Tel.: +33 (0) 1 43 12 79 01 Cell: +33 (0) 6 18 98 13 26 Email: crouviere@natureofinance.com

Eric Missonnier-Rohart Directeur Général Natureo Finance 21 rue du Faubourg Montmartre 75009 Paris, France

Tel.: +33 (0) 1 43 12 79 03 Cell: +33 (0) 6 15 89 10 74 Email: emissonnier@natureofinance.com

Natureo Finance

21 rue du Faubourg Montmartre

75009 Paris, France

Tel: +33 (0) 1 43 12 79 00

Web Site: http://www.natureofinance.com